Тайфуны — природные гидрологические явления

О явлении

Тайфу́н (от кит. трад. 颱風, упр. 台风, пиньинь: táifēng, яп. 台風 (taifū) — «сильный ветер» или от др.-греч. Τυφῶν — Тифон (мифическое чудовище, олицетворявшее бури и ветры)).

Тифон (Тифоей, др.-греч. Τυφῶν, Τυφωεύς, Τυφώς, эпич. Τυφάων) — в древнегреческой мифологии могущественный и чудовищный великан, порожденный Геей; олицетворение огненных сил земли и её испарений, с их разрушительными действиями (имя Тифон одного корня с глаголом τύφω, что означает «дымить, чадить»). Сын Тартара и Геи, родился в Киликии (либо сын Тартара и Тартары). Либо сын Геры, рождённый без отца, воспитан Пифоном[3]. Либо Кронос дал Гере два яйца, помазанных его семенем, она закопала их под горой Арим, и родился Тифон. От Эхидны Тифон был отцом мифических чудовищ (Орфа, Кербера, Лернейской гидры, Колхидского Дракона, Немейского льва и др.), которые на земле и под землею угрожали человеческому роду, пока Геракл не уничтожил большинство из них (кроме Сфинкса, Кербера и Химеры). От Тифона пошли все ветры-пустовеи, кроме Нота, Борея и Зефира.

Картинки по запросу Тифон картинки

Тайфун — разновидность тропического циклона, которая типична для северо-западной части Тихого океана. В центральной части тайфунов наблюдается наибольшее снижение давления воздуха на поверхности моря, достигающее 650 мм рт.ст. (циклон Тип, 1979).

Атмосфе́рное давле́ние — давление атмосферы, действующее на все находящиеся в ней предметы и на земную поверхность, равное модулю силы, действующей в атмосфере на единицу площади поверхности по нормали к ней. В покоящейся стационарной атмосфере давление численно равно весу вышележащего столба воздуха на основание с площадью, равной единице. Атмосферное давление является одним из термодинамических параметров состояния атмосферы, оно изменяется в зависимости от места и времени. Давление — величина скалярная, имеющая размерность L−1MT−2, измеряется барометром.

Единицей измерения в Международной системе единиц (СИ) является паскаль (русское обозначение: Па; международное: Pa). Кроме того, в Российской Федерации в качестве внесистемных единиц давления допущены к использованию бар, миллиметр ртутного столба, миллиметр водяного столба, метр водяного столба, килограмм-сила на квадратный сантиметр и атмосфера техническая[3]. Атмосферное давление, равное давлению столба ртути высотой 760 мм при температуре 0 °C, называется нормальным атмосферным давлением (101 325 Па).

Зона активности тайфунов

Зона активности тайфунов, на которую приходится третья часть общего числа тропических циклонов на Земле, заключена между побережьем Восточной Азии на западе, экватором на юге и линией перемены даты на востоке.

Картинки по запросу Восточная Азия картинки

Восточная Азия примыкает к Тихому океану, омывается Японским, Восточно-Китайским и Южно-Китайским морями. Для региона характерна высокая сейсмическая активность. Климат в восточной части муссонный, сезонно-влажный, нередки тайфуны, наводнения. В таких частях Восточной Азии, как Монголия и Тибет, которые значительно удалены от океана, климат более суровый, соответственно континентальный и горный. Крупнейшим государством в регионе является Китайская Народная Республика.

Хотя большая часть тайфунов формируется с мая по ноябрь, другие месяцы от них также не свободны. Особенно разрушительным был сезон тайфунов 1991 года, когда у побережья Японии буйствовало несколько тайфунов давлением 870—878 мбар.

К берегам российского Дальнего Востока ( восточная часть России, к которой относят области бассейнов рек, впадающих в Тихий океан, а также остров Сахалин, Курильские острова, остров Врангеля, Командорские и Шантарские острова) тайфуны относит, как правило, после того, как их основной удар принимают на себя Корея (географическая территория (страна), включающая Корейский полуостров и прилегающие острова и объединённая общим культурно-историческим наследием. В прошлом единое государство. На севере имеет сухопутную границу с КНР и Россией. К востоку от Кореи находятся Японские острова), Япония и острова Рюкю (группа островов в Восточно-Китайском море, принадлежащих Японии и расположенных к юго-западу от неё).

Похожее изображение

Наиболее подвержены тайфунам Курильские острова (цепь островов между полуостровом Камчатка и островом Хоккайдо, чуть выпуклой дугой отделяющая Охотское море от Тихого океана), Сахалин (остров у восточного побережья Азии. Входит в состав Сахалинской области. Крупнейший остров России. Омывается Охотским и Японским морями), Камчатский (субъект Российской Федерации. Входит в состав Дальневосточного федерального округа, является частью Дальневосточного экономического района) и Приморский край (субъект Российской Федерации. Приморский край был образован 20 октября 1938 года указом Президиума Верховного Совета СССР «О разделении Дальневосточного края на Хабаровский и Приморский край» (в состав Приморского края вошли Приморская и Уссурийская области Дальневосточного края, упразднённые в 1939 и 1943 годах, соответственно). Административный центр — город Владивосток.).

Картинки по запросу российского Дальнего Востока картинки

Тектонические аэрозоли — природное геофизическое явление

Тектонические аэрозоли – смесь твердых микрочастиц и микро-капель, которая выделяется вместе с газами (водород, гелий, метан, углекислый газ) из микротрещин в горных породах.

Работы по исследованию так называемых тектонических аэрозолей (взвесей твердых частиц или микрокапель жидкости в воздухе) для прогнозирования природных катастроф начались около тридцати лет назад. Сама идея метода казалась довольно очевидной. Незадолго до землетрясения земная кора начинает деформироваться — сжиматься или растягиваться. В ней возникают микротрещины, через которые вытекают содержащиеся в горных породах газы — водород, углекислый газ, метан, гелий. С собой они выносят твердые микрочастицы. Так возникают тектонические аэрозоли. Их возрастающую концентрацию и удается обнаруживать приборами за несколько суток до землетрясений и вулканических извержений.

Одним из первых исследовать элементный состав аэрозолей, возникающих при вулканической деятельности, начал выпускник физического факультета МГУ Владимир Алексеевич Алексеев. Во время извержений вулкана Толбачик на Камчатке в конце 70-х — начале 80-х годов он увидел над трещинами, тянувшимися на многие километры, облака аэрозолей. Все они должны осаждаться первым снегом: он вымывает из атмосферы почти все посторонние примеси. Выделив аэрозоли, осевшие во время снегопада, можно точно узнать их состав, понять, как они распределены, как связаны с розой ветров.

Для проверки новой идеи в 1981 году была организована экспедиция на камчатский вулкан Авача. Но шел сентябрь, и снег все не выпадал. Тогда Владимир Алексеевич и принял решение: идти на вершину, к самому кратеру, и собирать пробы там. Это было опасно — могли сойти лавины. Сопровождать его вызвалась однофамилица Алексеева, Нина Григорьевна, сотрудник другого института, которая тоже занималась аэрозолями. Вместе они штурмовали вершину Авачи, вместе отбирали пробы. Нина Григорьевна вошла потом в коллектив Владимира Алексеевича в подмосковном Троицком — филиале Института атомной энергии им. И. В. Курчатова, став неизменным спутником Алексеева практически во всех экспедициях. Но уже та первая работа вскоре была признана основополагающей, потому что именно тогда впервые удалось определить количественные характеристики аэрозолей. Для подтверждения полученных результатов потребовалось, однако, продолжить исследования в начале 90-х годов, в период активной вулканической и сейсмической деятельности на Камчатке. Вулканологи в тот момент измеряли деформации поверхности на профиле длиной более двух километров в двадцати километрах от вулкана Авача. Оказалось, что концентрация микроэлементов в аэрозолях практически постоянна за весь сезон снегонакопления, и только два момента резко выделялись аномальными значениями. Один пришелся на время извержения вулкана — это был январь 1991 года. А значительный выброс в декабре 1990 года практически стал предвестником готовящегося извержения. Произошел он одновременно с началом сильных деформаций: выход аэрозоля действительно происходит при изменении напряженного состояния геологической среды. Само же извержение произошло, как ни странно, практически без деформаций. Таким образом, извержение вулкана Авача не смогли предсказать никакие геофизические методы, кроме исследования аэрозолей. Изменения их состава и связанных с ними электромагнитных характеристик атмосферы стали верными признаками грядущих разрушительных событий.

Для исследований каждый раз приходилось ждать первого снега. Поэтому, когда в начале 80-х позвонили из Крыма и сообщили, что там прошел обильный снегопад, «команда» (в кавычках, потому что в составе ее было по-прежнему только двое Алексеевых) в тот же день вылетела на полуостров и начала изучать уже другой, казалось бы, тип тектонических аэрозолей, связанных с грязевым вулканизмом.

Владимир Алексеевич вспоминает, что, когда они туда прилетели, снега намело выше колена. С трудом найдя разломы, на которых работали раньше, отобрали пробы, проанализировали. Оказалось, что большой вулкан Авача выбрасывает в год с аэрозолями столько же металла, сколько маленькие грязевые вулканы, связанные с крымской тектоникой.

А после исследований в эпицентре крупного землетрясения в Кум-Даге в 1983 году стало понятно не только то, что аэрозоли действительно появляются перед землетрясениями, но и то, что они связаны с местом выхода радона примерно в 750 километрах. Весь огромный разлом — от Ашхабада до Крыма — «работает» как предвестник землетрясения!

Там же, в Крыму, зародилась и еще одна идея. Аэрозоли служат ядрами конденсации водяных паров. И, значит, над разломами должна возникать повторяющая их форму своеобразная «тектоническая» облачность. Математическое подтверждение этому совсем недавно нашли коллеги из Московского государственного университета. Совместно с ними был проведен анализ плотности облаков, возникающих перед землетрясением, за пятьдесят лет наблюдений. Исследования показали, что перед землетрясением, примерно за двое суток, действительно образуется именно такая облачность.

А дальше исследователи стали изучать, как аэрозоли влияют на жизнь. Ведь исходящие из зон тектонической активности аэрозоли накапливаются и микроорганизмами и растительностью — мхами, лишайниками, травой и листьями. Чтобы выяснить, как они влияют на здоровье людей, совместно со специалистами из Института физики Земли создали своего рода «полигон» в Туркмении. Были проанализированы медицинские карточки детей за двадцатилетний период. Именно детей, потому что они еще не подвержены влиянию табачного дыма, легкие у них чище. А поскольку официальная статистика часто неверна, пришлось заново просмотреть тысячи детских карточек.

В итоге кропотливой работы было показано: как только начинается тектоническая активность, у детей сразу возрастает количество легочных заболеваний. Это очень важный момент — никто тогда и не предполагал, что многие болезни могут быть связаны именно с аэрозольными выбросами.

Для более детального изучения аэрозольных аномалий в нижней атмосфере, сопровождающих тектонические процессы, в 2001 году группа Алексеева вместе с сотрудниками Института космических исследований РАН провели лазерные исследования в двух сейсмических районах Российской Федерации — Тамани и Дагестане, в которых постоянно происходят небольшие землетрясения с магнитудой 2-4. (Магнитуда определяет количество энергии, которое выделяется во время землетрясения). Для измерений использовались портативный лидар (лазерный локатор) с дальностью действия около двух километров и лазерный аэрозольный нефелометр — прибор для измерения концентрации частиц в аэрозоле и определения их формы и размера по интенсивности рассеянного ими света.

В ходе экспериментов, проведенных совместно с Институтом оптики атмосферы Сибирского отделения РАН, исследователи установили, что концентрация атмосферных аэрозолей в области тектонических разломов резко возрастает (порой в два раза!) за несколько часов до землетрясения. Одновременно меняются и другие физические характеристики атмосферы. В несколько раз увеличивается электропроводность воздуха, а напряженность электрического поля атмосферы заметно уменьшается. В воздухе растет содержание радона и сероводорода. И все эти изменения прослеживаются до высоты около километра. Однако более слабые землетрясения (с магнитудой 1,0-1,5) подобных закономерностей пока не выявили.

Теперь исследователи окончательно установили: деформации в земной коре сопровождаются аэрозольными выбросами. Но для надежных предсказаний нужно исследовать эти гигантские разломы в целом, по всей длине, изучать космическими методами, потому что только из космоса видны такие большие пространства. Ведь только рассмотрев всю динамику разлома полностью, а не частично, как сейчас, можно дать прогнозы хотя бы за несколько суток.

В начале 90-х годов коллектив Института оптики атмосферы совместно с СКБ «Оптика» и НИИ космического приборостроения создали первый российский космический лидар — лазерный локатор БАЛКАН (Бортовой аэрозольный лидарный комплекс академии наук). 20 мая 1995 года он был успешно выведен на орбиту и сразу же вошел в перечень достижений Академии наук.

В составе модуля «Спектр» орбитальной станции «Мир» БАЛКАН успешно отработал до 1997 года. Свой ресурс он еще далеко не выработал, когда грузовой корабль «Прогресс» во время отработки операции стыковки врезался в станцию «Мир» (см. «Наука и жизнь» № 12, 1997 г.). В модуле «Спектр» образовалась пробоина, и его пришлось загерметизировать, «похоронив» там все научные результаты. БАЛКАН ушел на дно Мирового океана вместе с уникальной станцией «Мир».

Сотрудники лаборатории оптического зондирования атмосферы Института оптики атмосферы Сибирского отделения РАН со дня основания института занимались разработкой локаторов наземного, самолетного и космического базирования. Авиационные системы лазерного зондирования оказались чрезвычайно полезными для исследований в области метеорологии, экологии, физики атмосферы и океана. А если подобные системы развернуть на орбитальных станциях, возможности глобального и систематического мониторинга значительно расширятся.

В этом направлении уже есть серьезные наработки. Ведь кроме лидара БАЛКАН примерно в то же время в составе модуля «Природа» станции «Мир» работал российско-французский лидар ALISSA, выведенный на орбиту в мае 1996 года. В сентябре 1994 года был осуществлен первый, достаточно успешный орбитальный эксперимент по многочастотному лазерному зондированию всей толщи земной атмосферы с борта американского космического корабля серии «Шаттл». Он сопровождался сеансами синхронного наземного и самолетного лидарного зондирования, в том числе проведенными сотрудниками томского Института оптики атмосферы.

Российские исследователи предложили вести подобные наблюдения с помощью малых космических аппаратов, размещенных на орбите в шестистах километрах от поверхности Земли. Для этой цели они предложили создать специализированный метеорологический лидар.

Чтобы уточнить связи между характеристиками аэрозольных полей в атмосфере и геофизической активностью, на юге Байкала, который известен своей сейсмической неустойчивостью, в районе 106-го километра Кругобайкальской железной дороги, развернут полигон. Он объединит в единую измерительную систему датчики на суше, в воде и в приземной атмосфере. Датчики будут измерять как классические параметры тектонической активности, так и нетрадиционные, связанные с оптикой воздуха и воды, электрическими полями в них и электропроводностью мантии. Результаты этих полевых исследований станут основой для выбора параметров излучения лидара.

Российское космическое агентство в своей программе «Эталон» уже создает проекты сети малых специализированных спутников с электрическими, магнитными, оптическими и прочими детекторами для предсказания и обнаружения мест проявления земных катаклизмов, и в первую очередь — землетрясений. Один из спутников этой сети под названием «Тектоника-А» предполагается оснастить многочастотным лидаром, работающим в долговременном автоматическом режиме. Одной из его целей станет обнаружение и, по возможности, прогнозирование естественных и антропогенных катастроф, сопровождающихся мощными выбросами аэрозолей в нижние слои тропосферы.

Подробнее см.: https://www.nkj.ru/archive/articles/4220/ (Наука и жизнь, ЛАЗЕР ПРЕДСКАЖЕТ ЗЕМЛЕТРЯСЕНИЕ)

Разжижение грунтов — природное геофизическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiT69Xk7cXUAhXiB5oKHSD5AJIQjRwIBw&url=http%3A%2F%2Foxablogg.blogspot.com%2F2012%2F08%2Fblog-post_20.html&psig=AFQjCNGqjijOZtjlQcSsGNGOks1MPYK0eg&ust=1497822325767557

Разжижение грунтов — процесс, вследствие которого грунт ведёт себя не как твёрдое тело, а как плотная жидкость (флюид).

Грунт — многокомпонентные динамичные системы (горные породы, почвы, осадки и техногенные образования), рассматриваемые как часть геологической среды и изучаемые в связи с инженерно-хозяйственной деятельностью человека. Грунты используют в качестве оснований зданий и сооружений, материалов для строительства дорог, насыпей и плотин, среды для размещения подземных сооружений (тоннелей, трубопроводов, хранилищ) и др. Грунты изучаются в инженерной геологии и её разделе грунтоведении.

Картинки по запросу грунт картинки

Флюи́д (от лат. fluidis — «текучий») — вещество, поведение которого при деформации может быть описано законами механики жидкостей. Термин, как правило, относится к состоянию вещества, объединяющего жидкости и газы, и эквивалентен словосочетанию «газы, плазма, изотропные жидкости и пластичные тела». В русском языке в основном используется для обозначения газов с плотностью характерной для жидкости, но неограниченно расширяющихся. Также используются термины текучая среда или текучее вещество.

Состояние характеризуется тем, что при приложении касательных напряжений происходит последовательная деформация вещества. Степень сопротивления деформации определяется вязкостью вещества.

Даже твёрдые вещества могут вести себя как флюиды. Если время действия внешней силы больше времени релаксации, то тело ведет себя как жидкость, то есть течёт.

Разжижение более характерно для насыщенных влагой сыпучих грунтов, таких как илистые пески или пески, содержащие прослойки непроницаемых для воды отложений.

Сыпу́чее те́ло — одна из разновидностей сплошной среды, состоящая из множества отдельных макроскопических твёрдых частиц, теряющих механическую энергию при контактном взаимодействии друг с другом.

Физика сыпучего тела относится к физике мягкого вещества и рассматривает вопросы статики и динамики сыпучих сред. На практике это может касаться случаев песка, грунтов, зерна, цемента и т. д.

Также рассматриваются свойства сыпучих тел и их напряжённое состояние.

В практическом плане это позволяет производить расчеты:

  • оснований сооружений на прочность,
  • откосов на устойчивость,
  • определение давления сыпучего тела:
  • на подпорные стены,
  • на стенки хранилищ,
  • на заглубленные сооружения и др. вопросы.

Для облегчения проведения практических расчетов используются вспомогательные таблицы и графики.

Породы, наиболее подверженные разжижению, относительно молоды (голоцен), это пески и илы с частицами одинакового размера, слоем не менее метра и насыщенные водой.

Голоце́н (греч. ὅλος — «целый, весь» + καινός — «новый») — эпоха четвертичного периода, сменяющая плейстоцен и длящаяся последние 12 тысяч лет вплоть до современности. Также голоценом можно назвать текущий в наши дни интергляциал (межледниковье), пришедший на смену вюрмскому оледенению. Граница между голоценом и плейстоценом установлена на рубеже 11 700 ± 99 лет назад относительно 2000 года.

Такие породы часто находятся вдоль русел рек, у берегов, там, где накопился лёсс и песок. 

Лёсс (нем. Löß или Löss) — осадочная горная порода, неслоистая, однородная известковистая, суглинисто-супесчаная, имеет светло-жёлтый или палевый цвет. Термин «лёсс» был введён в геолого-минералогическую литературу в 1823 году Карлом Цезарем фон Леонгардом.

Лёсс залегает в виде покрова: от нескольких метров до 50—100 м — на водоразделах, склонах и древних террасах долин.
Картинки по запросу Лёсс картинки
Песо́к — осадочная горная порода, а также искусственный материал, состоящий из зёрен горных пород. Очень часто состоит из почти чистого минерала кварца (вещество — диоксид кремния). Слово «песок» часто употребляется во множественном числе («пески»), но форма множественного числа имеет и другие значения. Природный песок представляет собой рыхлую смесь зёрен размером 0,16—5 мм, образовавшаяся в результате разрушения твёрдых горных пород. В зависимости от условий накопления могут быть аллювиальными, делювиальными, морскими, озёрными, эоловыми. Пески, возникшие в результате деятельности водоёмов и водотоков имеют более округлую, окатанную форму.
  Картинки по запросу песок картинки

Некоторые примеры разжижения: плывун, плывунная глина, мутьевой поток и сейсмическое разжижение.

Плыву́н — насыщенный водой грунт (обычно песок или супесь), который способен разжижаться под механическим воздействием на него, при вскрытии его котлованами и другими выработками.Также про плывун можно сказать, что это герметичный объём в толще грунта, в котором под давлением находятся мелкие и пылеватые пески, насыщенные водой. Его толщина варьируется от 2 до 10 м. Плывуны чаще всего встречаются в болотистых местах и имеют вытянутую форму.

Картинки по запросу плывун картинки

Разжижение грунта может произойти во время землетрясения, потому что при прохождении сейсмической волны частицы грунта начинают колебаться с разными скоростями и часть контактов между ними разрывается, в результате грунт может стать водой с взвешенными в ней песчинками. Вода стремится отжаться, но прежде чем грунт вернётся к первоначальному состоянию, здания, стоящие на нём, могут быть разрушены. Сильнейшие разрушения, вызванные разжижением грунтов, произошли в 1964 году: 27 марта у берегов Аляски близ Анкориджа и 16 июня в Ниигате.

Источник

 

Извержения вулканов — природное геофизическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwib3N6dyp_UAhUKiCwKHXDADisQjRwIBw&url=http%3A%2F%2Fwww.penki.lt%2Fru%2FIzverzhenie-vulkana-Mayon-na-Filippinakh.media%3Fid%3D209452&psig=AFQjCNGXAES4vbZO1HncJw5zBFGNoZ-Ffg&ust=1496507271735996

Природное геофизическое явление

Вулканы — геологические образования на поверхности коры Земли или другой планеты, где магма выходит на поверхность, образуя лаву, вулканические газы, камни (вулканические бомбы и пирокластические потоки). Слово «вулкан» происходит от имени древнеримского бога огня Вулкана.

Наука, изучающая вулканы — вулканология, геоморфология.

Извержение вулкана — процесс выброса вулканом на земную поверхность раскалённых обломков, пепла, излияние магмы, которая, излившись на поверхность, становится лавой. Извержение вулкана может иметь временной период от нескольких часов до многих лет.

Извержения вулканов относятся к геологическим стихийным бедствиям, которые могут привести к чрезвычайным ситуациям. В некоторых случаях может даже являться самым опасным стихийным бедствием.

Картинки по запросу извержение вулкана

Типы вулканических извержений

Типы вулканических извержений, как правило, называются в честь известных вулканов, на которых наблюдается характерное извержение. Извержения некоторых вулканов могут иметь только один тип в течение определённого периода активности, в то время как другие могут демонстрировать целую последовательность типов извержений. Существуют различные классификации, среди которых выделяются общие для всех типы.

Гавайский тип

Извержения гавайского типа могут возникать вдоль трещин и разломов, как при извержении вулкана Мауна-Лоа на Гавайях в 1950 году. Они также могут проявляться через центральное жерло, как при извержении в кратере Килауэа Ики вулкана Килауэа (Гавайи) в 1959 году.

Данный тип характеризуется излияниями жидкой, высокоподвижной базальтовой лавы, формирующей огромные плоские щитовые вулканы. Пирокластический материал практически отсутствует. В ходе извержений через трещины фонтаны лавы выбрасывается через разломы в рифтовой зоне вулкана и растекаются вниз по склону потоками небольшой мощности на десятки километров. При извержении через центральный канал лава выбрасывается вверх на несколько сотен метров в виде жидких кусков типа «лепёшек», создавая валы и конусы разбрызгивания. Эта лава может скапливаться в старых кратерах, формируя лавовые озёра.

Стромболианский тип

Стромболианский тип (от вулкана Стромболи на Липарских островах к северу от Сицилии) извержений связан с более вязкой основной лавой, которая выбрасывается разными по силе взрывами из жерла, образуя сравнительно короткие и более мощные лавовые потоки. При взрывах формируются шлаковые конусы и шлейфы кручёных вулканических бомб. Вулкан Стромболи регулярно выбрасывает в воздух «заряд» бомб и кусков (последнее извержение март 2007 г.) раскалённого шлака.

Плинианский тип

Плинианский тип (вулканический, везувианский) извержений получил своё название по имени римского учёного Плиния Старшего, погибшего при извержении Везувия в 79 году н. э., уничтожившего три крупных римских города Геркуланум, Стабии и Помпеи.

Характерной особенностью этого типа извержений являются мощные, нередко внезапные взрывы, сопровождающиеся выбросами огромного количества тефры, образующей пемзовые и пепловые потоки. Плинианские извержения опасны, так как происходят внезапно, часто без предварительных предвещающих событий. Крупные извержения плинианского типа, такие как извержения вулкана Сент-Хеленс 18 мая 1980 года или извержение Пинатубо на Филиппинах 15 июня 1991 года, могут выбрасывать пепел и вулканические газы на десятки километров в атмосферу. При плинианском типе извержений часто возникают быстродвижущиеся пирокластические потоки.

Пелейский тип

Пелейский тип извержений характеризуется образованием грандиозных раскалённых лавин или палящих туч, а также ростом экструзивных куполов чрезвычайно вязкой лавы. Своё название этот тип извержений получил от вулкана Мон-Пеле на острове Мартиника в группе малых Антильских островов, где 8 мая 1902 года взрывом была уничтожена вершина дремавшего до этого вулкана, и вырвавшаяся из жерла раскалённая тяжёлая туча уничтожила город Сен-Пьер с 28 000 жителями. После извержения из жерла вылезла «игла» вязкой магмы, которая достигнув высоты 300 метров, вскоре разрушилась. Подобное извержение произошло 30 марта 1956 года на Камчатке, где грандиозным взрывом была уничтожена вершина вулкана Безымянного. Туча пепла поднялась на высоту 40 км, а по склонам вулкана сошли раскалённые лавины, которые, растопив снег, дали начало мощным грязевым потокам.

Газовый или фреатический тип[править 

Газовый или фреатический тип извержений (используется также название Бандайсанский (Бандайский) тип), при котором выбрасываются в воздух обломки твёрдых, древних пород (новая магма не извергается), обусловлен либо магматическими газами, либо связан с перегретыми грунтовыми водами. Фреатическая активность обычно слабая, но бывают сильные проявления, такие как извержение вулкана Тааль на Филиппинах в 1965 году и вулкана Суфриер на острове Бас-Тер.

Подлёдный тип

Подлёдный тип извержений относят к вулканам, расположенным подо льдом или ледником. Такие извержения могут вызвать опасные наводнения, лахары и шаровую лаву. Всего пять извержений такого типа наблюдалось до настоящего времени.

Извержение пепловых потоков

Извержения пепловых потоков были широко распространены в недалёком геологическом прошлом, но в настоящем не наблюдались человеком. В какой-то мере данные извержения должны напоминать палящие тучи или раскалённые лавины. На поверхность поступает магматический расплав, который, вскипая, разрывается и раскалённые лапилли пемзы, обломки вулканического стекла, минералов, окружённые раскалённой газовой оболочкой, с огромной скоростью движутся под уклон. Возможным примером подобных извержений может стать извержение 1912 года в районе вулкана Катмай на Аляске, когда из многочисленных трещин, излился пепловый поток, распространившийся примерно на 25 км, вниз по долине, имея мощность около 30 м. Долина получила название «Десяти тысяч дымов» из-за большого количества пара, выделявшегося долгое время из центральной части потока. Объём пепловых потоков может достигать десятков и сотен кубических километров, что говорит о быстром опорожнении очагов с расплавом кислого состава.

Гидроэксплозивные извержения

Гидроэксплозивные извержения происходят в мелководных условиях океанов и морей. Их отличает образование большого количества пара, возникающего при контакте раскалённой магмы и морской воды.

Исландский тип

Исландский тип (от вулканов Исландии) характеризуется выбросами очень жидкой базальтовой лавы с содержанием пирокластического материала. Как правило, образуют плоские щитовые вулканы. Извержение происходит по трещинам. (Гекла, Исландия). Историческим примером извержения исландского типа было извержение Лаки в Исландии в 1782 году.

Тип «треск грома»

Этот тип был зафиксирован при извержении вулкана на острове Пальма в 1915 году. Происходит на купольных вулканах. По трещинам, которые начинают идти из магматического очага, идёт лава, но уже не вязкая. Когда трещины доходят до кратера, происходят эксплозивные извержения (со взрывами).

Картинки по запросу извержение вулкана

Показатель вулканической эксплозивности

Показатель вулканической эксплозивности (VEI — англ. Volcanic Explosivity Index) — показатель силы извержения вулкана, основанный на оценке объёма извергнутых продуктов (тефра) и высоте столба пепла. Предложен К. Ньюхоллом (C. A. Newhall) и С. Селфом (S. Self) в 1982 году для оценки воздействия извержений на земную атмосферу.

Диапазон изменения: от нуля — для извержений, с объёмом выбросов менее 10 тыс. м³ (104 м³), до восьми — для извержений, выбрасывающих в атмосферу более 1000 км³ (1012 м³) пепла и высотой столба пепла более 25 км (см. рис.)

Извержения с показателем VEI 6 баллов и более могут вызывать эффект вулканической зимы — заметного похолодания в планетарном масштабе.

Картинки по запросу шкала вулканической активности картинки

Землетрясение — природное геофизическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiH07Hdg-7TAhVqJJoKHYxfD1AQjRwIBw&url=http%3A%2F%2Fcoloringpages24x7.com%2Fduring%2Bearthquake%2Bdrawing&psig=AFQjCNERfiRyXiB257sQljUdiOP1CBxUzQ&ust=1494804695138847

Характеристика явления

Землетрясе́ния — представляют собой подземные толчки и колебания земной поверхности. Наиболее опасные из них возникают из-за тектонических смещений и разрывов в земной коре или верхней части мантии Земли. Колебания от них в виде упругих сейсмических волн передаются на огромные расстояния, а вблизи от очагов землетрясений они становятся причиной разрушения зданий и гибели людей. Землетрясения и связанные с ними явления изучает специальная наука — сейсмология, которая ведёт исследования по следующим основным направлениям:
Изучение природы землетрясений, иными словами, ищет ответ на вопрос: почему, как и где они происходят.
Применение знаний о землетрясениях для защиты от них путём прогноза возможных в том или ином месте сейсмических ударов в целях строительства стойких к их воздействию конструкций и сооружений.
Изучение строения земных недр и разведка месторождений полезных ископаемых с использованием сейсмических волн от землетрясений и искусственных сейсмических источников.
Не существует точной статистики о количестве землетрясений, происходящих на Земле. Ежегодно приборами регистрируется более миллиона землетрясений. Рост количества пунктов наблюдений и совершенствование приборов для записи сейсмических колебаний позволили регистрировать с каждым десятилетием всё больше землетрясений происходящих в недрах планеты. Если в начале 1900-х годов регистрировалось около 40 землетрясений магнитуды 7 и выше, то к XXI веку местоположение и сила всех происходящих землетрясений такой магнитуды фиксировалась, и составила более 4000 событий за десятилетие. В зависимости от энергии землетрясений они условно подразделяются на сильные, слабые и микроземлетрясения. Термины «разрушительное» или «катастрофическое» используется по отношению к землетрясению любой энергии и природы, если оно сопровождалось разрушениями и гибелью людей.
Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения зданий и сооружений вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.
Большинство очагов землетрясений возникает близ поверхности Земли.
Землетрясения также могут быть вызваны обвалами и большими оползнями. Такие землетрясения называются обвальными, они имеют локальный характер и небольшую силу.
Вулканические землетрясения — разновидность землетрясений, при которых толчки возникают в результате высокого напряжения в недрах вулкана. Причина таких землетрясений — лава, вулканические газы. Землетрясения этого типа слабы, но продолжаются долго, многократно — недели и месяцы. Тем не менее, опасности для людей землетрясение этого вида не представляет. Кстати, землетрясение иногда является самым опасным стихийным бедствием наряду с извержением вулкана.

Причиной землетрясения является быстрое смещение участка литосферы (литосферных плит) как целого в момент релаксации (разрядки) упругой деформации напряжённых пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли.

Согласно научной классификации, по глубине возникновения землетрясения делятся на 3 группы:

«нормальные» — 33—70 км,
«промежуточные» — до 300 км,
«глубокофокусные» — свыше 300 км.
https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwius9ylhO7TAhXhDZoKHVt2BDAQjRwIBw&url=http%3A%2F%2Fgeolvg.blogspot.com%2F2012%2F01%2Fblog-post_08.html&psig=AFQjCNERfiRyXiB257sQljUdiOP1CBxUzQ&ust=1494804695138847

Сейсмические волны и их изучение

СЕЙСМИЧЕСКИЕ ВОЛНЫ (а. seismic waves; н. seismische Welle; ф. ondes sismiques; и. onda sismica) — колебания, распространяющиеся в Земле от природных (землетрясений, извержений вулканов, обвалов в карстовых полостях, горных ударов и др.) или искусственных (взрывов, вибраторов, пневматических, газодинамических, электроискровых, гидравлических) источников. Частотный диапазон сейсмических волн от 0,0001 Гц до 100 Гц. Вблизи очагов сильных землетрясений сейсмические волны обладают разрушительной силой, на значительных расстояниях от источников их интенсивность уменьшается вследствие затухания. Для регистрации сейсмических волн используются сейсмографы.

В однородной изотропной идеально-упругой твёрдой среде вдали от границ раздела, в т.ч. вдали от поверхности Земли, могут распространяться сейсмические волн только двух типов: продольные (Р) и поперечные (S). Продольные сейсмические волны переносят изменения объёма (сжатия и растяжения) в среде. Движения частиц в них совершаются параллельно направлению распространения волны, а деформации представляют собой суперпозицию всестороннего сжатия (растяжения) и чистого сдвига. Поперечные сейсмические волн не образуют в среде объёмных изменений, движения частиц в них происходят перпендикулярно направлению распространения волны, а деформация является чистым сдвигом. Скорость продольных Vp и поперечных Vs волн определяется формулами:

Vp= (k + 4/3m)/r, Vs= m/r,

где к — модуль всестороннего сжатия,

m — модуль сдвига,

r — плотность.

Скорость продольных волн примерно в 3 раз больше скорости поперечных волн. Волны Р и S распространяются из источника по объёму Земли (объёмные волны). Их амплитуда для однородной и изотропной среды убывает обратно пропорционально расстоянию от источника.

На границах раздела и других неоднородностях в Земле наблюдаются явления отражения, преломления и обмена типов сейсмических волн. Вблизи границ возникают и распространяются поверхностные волны Рэлея и Лява. Первые являются суперпозицией неоднородных продольных и поперечных сейсмических волн, вторые — только поперечных. Волны, Рэлея возникают в присутствии одной границы раздела (поверхности Земли), Лява — двух и более. В Земле скорость поверхностных волн меньше скорости поперечных волн и зависит от частоты. Амплитуда волн Рэлея и Лява убывает приблизительно обратно пропорционально корню квадратному из расстояния до источника.

Наблюдения на поверхности Земли за распространением сейсмических волн позволяют исследовать строение Земли. Сейсмические волны от искусственных невзрывных источников сейсмических колебаний и взрывов широко применяются при сейсмической разведке. Сейсмические волны используются для изучения, прогнозирования землетрясений и горных ударов.

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwingMG_he7TAhVDKpoKHV0aARIQjRwIBw&url=http%3A%2F%2Fwww.what-this.ru%2Fnature%2Fearth%2Fearthquakes.php&psig=AFQjCNERfiRyXiB257sQljUdiOP1CBxUzQ&ust=1494804695138847

Интенсивность землетрясений

Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясения на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности:

в Европе — европейская макросейсмическая шкала (EMS),
в Японии — шкала Японского метеорологического агентства (Shindo),
в США и России — модифицированная шкала Меркалли (MM):
Общая характеристика землетрясений по шкале интенсивности:

1 балл (незаметное) — отмечается только специальными приборами;
2 балла (очень слабое) — ощущается только очень чуткими домашними животными и некоторыми людьми в верхних этажах зданий;
3 балла (слабое) — ощущается только внутри некоторых зданий, как сотрясение от грузовика;
4 балла (умеренное) — землетрясение отмечается многими людьми; возможно колебание окон и дверей;
5 баллов (довольно сильное) — качание висячих предметов, скрип полов, дребезжание стекол, осыпание побелки;
6 баллов (сильное) — лёгкое повреждение зданий: тонкие трещины в штукатурке, трещины в печах и т. п.;
7 баллов (очень сильное) — значительное повреждение зданий; трещины в штукатурке и отламывание отдельных кусков, тонкие трещины в стенах, повреждение дымовых труб; трещины в сырых грунтах;
8 баллов (разрушительное) — разрушения в зданиях: большие трещины в стенах, падение карнизов, дымовых труб. Оползни и трещины шириной до нескольких сантиметров на склонах гор;
9 баллов (опустошительное) — обвалы в некоторых зданиях, обрушение стен, перегородок, кровли. Обвалы, осыпи и оползни в горах. Скорость продвижения трещин может достигать 2 см/с;
10 баллов (уничтожающее) — обвалы во многих зданиях; в остальных — серьёзные повреждения. Трещины в грунте до 1 м шириной, обвалы, оползни. За счет завалов речных долин возникают озёра;
11 баллов (катастрофа) — многочисленные трещины на поверхности Земли, большие обвалы в горах. Общее разрушение зданий;
12 баллов (сильная катастрофа) — изменение рельефа в больших размерах. Огромные обвалы и оползни. Общее разрушение зданий и сооружений.

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwidrNTchu7TAhWBCJoKHRnIBU8QjRwIBw&url=http%3A%2F%2Fzeml.info%2Fintensivnost-i-magnituda%2F&psig=AFQjCNGhAyoSWVXfxOhnVwKRGiY6h2Nyow&ust=1494805347227591

 

Смывы склонов — природное геологическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiklN3__9vTAhXnJJoKHWvGCO8QjRwIBw&url=http%3A%2F%2Fgeoecograph.blogspot.com%2F2015%2F10%2FRastitelnost-kak-geologicheskij-faktor.html&psig=AFQjCNGE_bvABKIyELaAVV28_fUb-MHMnw&ust=1494185252787440

Водно-склоновые процессы

Водно-склоновые процессы связаны с проявлением плоскостного смыва продуктов выветривания и разрушением склонов мелкими временными струями воды. Оба эти процесса очень тесно связаны и обычно рассматриваются вместе как процесс склонового смыва. Поскольку важным результатом его является образование делювиальных отложений, его называют также делювиальным процессом. Кроме того на склонах периодически образуются и более крупные ручьи. Возникает другая форма смыва – склоновая эрозия или мелкоовражный размыв, по Е.В.Шанцеру.

Склоновый смыв обусловлен деятельностью дождевых и, талых снеговых вод, стекающих по поверхности склонов. Наиболее интенсивно он протекает в условиях слабого развития растительности в областях семиаридного климата. Деятельность текучих вод на склонах принимает различные формы в зависимости от крутизны склона. На пологих склонах с уклоном до 50 проявляется плоскостное действие текущей по поверхности воды без каких-либо русел. Перемещается только самый мелкий материал, так как мощность струек крайне невелика. На более крутых склонах разрушительная способность струек воды возрастает, в связи с чем они начинают врезаться в поверхность склона. Возникает струйчатый, или мелкорытвинный смыв. Постоянное перемещение мелких рытвинок вызывает в целом плоскостное разрушение склона, общее и равномерное понижение его поверхности. Следовательно, обе описанные формы стока ведут к плоскостному смыву. Верхняя часть склона при этом разрушается, нижняя — погребается в продуктах выноса. Переносимый материал откладывается, попадая на более пологие участки склона, образуется аккумулятивный шлейф, верхний край которого поднимается вверх по склону, способствуя его выравниванию. Процесс ведет, таким образом, к выполаживанию склонов, к сглаживанию и срезанию выпуклостей. Однако в зависимости от прочности пород это происходит очень неравномерно. Прочные горные породы значительно медленнее разрушаются и обычно образуют выступы, слабые наоборот — выполаживаются быстрее. Здесь создаются ложбины с более пологим скатом. В ослабленных сильно трещиноватых зонах развиваются более глубокие рытвины. В условиях еще более крутых склонов с уклоном 20—300 сток концентрируется лишь по немногим более крупным рытвинам, быстро перерастающим в промоины и в мелкие овраги. Развивается склоновая эрозия. В особенности большое значение приобретает она на горных склонах, где овражное расчленение становится основным процессом их разрушения. Интенсивность склонового смыва в большой степени зависит от процессов выветривания, рыхлые продукты которого удаляются смывом. Денудационные формы рельефа,возникающие при склоновом смыве, очень разнообразны. На равнинах в однородных породах образуются сглаженные склоны смыва, очень постепенно переходящие в водораздельные равнины. При неравномерной прочности пород присутствуют останцовые выступы и ложбины стока — делли. Все эти денудационные формы бывают обычно скрыты маломощным покровом элювия и делювия и постепенно сливаются с рельефом аккумулятивного шлейфа в нижней части склона. В результате склоновой эрозии образуются рытвины, промоины, мелкие овраги. Все они направлены по линии наибольшего ската, очень слабо извилисты в плане. Характерно снижение высоты бортов этих ложбин вниз по склону до их полного исчезновения и почти прямая или слабо вогнутая форма продольного профиля. В нижней части склонов и у подножий образуются аккумулятивные делювиальные шлейфы.

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjioIOygNzTAhVrIJoKHQfkADcQjRwIBw&url=http%3A%2F%2Fpresent5.com%2Frelefoobrazuyushhie-processy-endogennyeendogennyeskladchatye-orogennye-dislokacii-razryvnye%2F&psig=AFQjCNGk_0MXkMQFCUDv-UeyRcTunUd5vg&ust=1494185361927584

Смывы почв

Явление, при котором вода, скатывающаяся по уклону, захватывает и уносит мелкие частицы почвы, уменьшая ее плодородие. Смывы почв объясняются уклоном местности, растительностью и составом почвы. Смывы почв увеличиваются при более крутом уклоне в мелкоземистых (глинистых, пылеватых) почвах и уменьшаются при наличии растительности. Для борьбы со смывами почв надо садить поперек склонов защитные полосы из лесных и плодовых древесных и кустарниковых пород и избегать пахоты вдоль склонов. Защитные полосу, насаждаемые поперек склонов, не только уменьшают смывы почв, но и увеличивают урожайность полей, так как насаждения препятствуют ветрам иссушать почву, помогают накапливанию снега и удлиняют срок его таяния. В горных районах и под ценные культуры иногда прибегают к террасированию крутых склонов.

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjJjoS-g9zTAhWoApoKHW_nBDQQjRwIBw&url=http%3A%2F%2Fzelkvartal.com.ua%2Flandshaftnoe-stroitelstvo%2Fterrasirovanie-sklonov.html&psig=AFQjCNEZ3m29RDWWssPqEFHx038r9XNLZQ&ust=1494186182250577

Делювиальные склоны

Склоны, на которых перемещение материала вниз по склону происходит в результате стока дождевых или талых вод в виде тонких переплетающихся струек, густой сетью покрывающих всю поверхность склонов, называют делювиальными. Энергия («живая сила») таких струек очень мала. Однако и они в состоянии проводить большую работу, смывая мелкие частицы продуктов выветривания и отлагая их у подножия склонов, где формируется особый тип континентальных отложений, называемых делювиальными, или просто делювием (от лат. deluo – смываю). Делювий чаще всего представлен суглинками или супесями. Однако состав его может меняться в широких пределах в зависимости от факторов, обусловливающих делювиальный смыв. Делювий характеризуется отсутствием слоистости или грубой слоистостью, параллельной склону, слабой сортированностью слагающих его частиц, крупность которых, как правило, уменьшается по мере удаления от подошвы склона. Часто делювиальные отложения бывают окрашены в различные оттенки серого цвета. В результате делювиального смыва уничтожается верхний, наиболее плодородный горизонт почвы, который и придает сероватую окраску отложениям. Делювиальный смыв наносит большой вред почвенному покрову. Интенсивность делювиального смыва зависит от ряда факторов: крутизны, длины склона и состава слагающих его пород, режима атмосферных осадков, интенсивности весеннего снеготаяния, от микрорельефа и характера поверхности склонов (занят ли склон лугом, пашней или лесом). Следует отметить, что характер растительного покрова (наличие или отсутствие дернины на склоне) более чем любой из перечисленных выше факторов влияет на интенсивность делювиального смыва. В лесу, с хорошо развитой лесной подстилкой, и на поверхностях с плотной травянистой дерниной делювиальный смыв гасится полностью, в том числе на крутых склонах. На пашнях же делювиальный смыв идет очень интенсивно даже при очень малых (2-3°) углах наклона. Так, на Придеснинском опытно-овражном участке на пашне и на посевах овса и кукурузы при углах наклона 17°, интенсивности осадков 2 мм/мин и общем их количестве 120 мм (один дождь) смыв достиг 47 т/га. Рядом, в тех же условиях, но на целинных участках, смыва не наблюдалось даже при углах наклона 24°. Неправильная распашка склонов, вырубка леса, неумеренный выпас скота резко увеличивают интенсивность склоновой денудации.
Равномерный плоскостной смыв может быть лишь на ровных склонах. Таких «идеальных» условий в природе нет. На поверхности склонов всегда есть неровности, понижения различных размеров. Встречая на своем пути такие понижения, отдельные струйки сливаются, образуют более мощные струи. Эти струи, обладая большей «живой силой», уже используют не только имеющиеся понижения, но и начинают прокладывать свой собственный путь, врезаясь в поверхность склона и образуя борозды. Так на склонах начинается процесс размыва – эрозия. Часть борозд с течением времени превращается в промоины, а некоторые из промоин – в овраги. Переход плоскостных склоновых процессов в линейные наблюдается не только на делювиальных склонах. Выше говорилось о переходе «каменных морей» в «каменные реки». Такой процесс наблюдается и на солифлюкционных склонах, где линейность движения выражается в форме безрусельных ложбин – деллей (см. рис. 54, приложения 7 и 25).
Заканчивая характеристику склоновых процессов, следует отметить, что несмотря на внешнюю «неброскость» делювиально-солифлюкционным процессам принадлежит главная роль в выполаживании склонов, в формировании таких широко распространенных форм рельефа, как придолинные и прибалочные склоны, делювиально-солифлюкционные «шлейфы».
На дне морей и океанов склоновые процессы имеют свою специфику.

Сель как природное геологическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjH35WM2LvTAhVLCywKHeQ9BLUQjRwIBw&url=https%3A%2F%2Ftengrinews.kz%2Fevents%2Fopublikovanyi-foto-video-vertoletnogo-obleta-rayone-selya-278187%2F&psig=AFQjCNFGz_Cf3BwXf5siyStN_YqLlLH3QQ&ust=1493075033942211

О природном геологическом явлении

Сель (от араб. سيل‎ — «бурный поток») — поток с очень большой концентрацией минеральных частиц, камней и обломков горных пород (до 50—60% объёма потока), внезапно возникающий в бассейнах небольших горных рек и вызываемый, как правило, ливневыми осадками или бурным таянием снегов.

Сель — нечто среднее между жидкой и твёрдой массой. Это явление кратковременное (обычно оно длится 1—3 ч), характерное для малых водотоков длиной до 25—30 км и с площадью водосбора до 50—100 км².

Скорость движения селевых потоков — в среднем 2—4 м/с, иногда 4—6 м/с, что обуславливает их большое разрушительное действие. На своем пути потоки прокладывают глубокие русла, которые в обычное время бывают сухими или содержат небольшие ручьи. Материал селей откладывается на предгорных равнинах.

Сели характеризуются продвижением его лобовой части в форме вала из воды и наносов или чаще наличием ряда последовательно смещающихся валов. Прохождение селя сопровождается значительными переформированиями русла.

Сель возникает в результате интенсивных и продолжительных ливней, бурного таяния ледников или сезонного снегового покрова, а также вследствие обрушения в русло больших количеств рыхлообломочного материала (при уклонах местности не менее 0,08—0,10). Решающим фактором возникновения может послужить вырубка лесов в горной местности — корни деревьев держат верхнюю часть почвы, что предотвращает возникновение селевого потока.

Иногда сели возникают в бассейнах небольших горных рек и сухих логов со значительными (не менее 0,10) уклонами тальвега и при наличии больших скоплений продуктов выветривания.

По механизму зарождения различают эрозийные, прорывные и обвально-оползневые сели.

Потенциальный селевой очаг — участок селевого русла или селевого бассейна, имеющий значительное количество рыхлообломочного грунта или условий для его накопления, где при определенных условиях обводнения зарождаются сели. Селевые очаги делятся на селевые врезы, рытвины и очаги рассредоточенного селеобразования.

  • Селевой рытвиной называют линейное морфологическое образование, прорезающее скальные, задернованные или залесенные склоны, сложенные обычно незначительной по толщине корой выветривания. Селевые рытвины отличаются небольшой протяженностью (редко превышают 500…600 м) и глубиной (редко более 10 м). Угол дна рытвин обычно более 15°.
  • Селевой врез представляет собой мощное морфологическое образование, выработанное в толще древних моренных отложений и чаще всего приуроченное к резким перегибам склона. Кроме древне-моренных образований селевые врезы могут формироваться на аккумулятивном, вулканогенном, оползневом, обвальном рельефе. Селевые врезы по своим размерам значительно превосходят селевые рытвины, а их продольные профили более плавные, чем у селевых рытвин. Максимальные глубины селевых врезов достигают 100 м и более; площади водосборов селевых врезов могут достигать более 60км². Объем грунта, выносимый из селевого вреза за один сель, может достигать 6 млн м³.
  • Под очагом рассредоточенного селеобразования понимают участок крутых (35…55°) обнажений, сильно разрушенных горных пород, имеющих густую и разветвленную сеть борозд, в которых интенсивно накапливаются продукты выветривания горных пород и происходит формирование микроселей, объединяющихся затем в едином селевом русле. Они приурочены, как правило, к активным тектоническим разломам, а их появление обусловлено крупными землетрясениями. Площади селевых очагов достигают 0,7 км² и редко больше.

Борьба с селями

Сели могут производить огромные разрушения. Борьба с селями ведётся преимущественно путём закрепления почвенного и растительного покрова, строительства специальных гидротехнических сооружений.

Для борьбы с селями проводят профилактические меры и строительство инженерных сооружений.

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwixn5Wn2bvTAhWBBiwKHVIdDsAQjRwIBw&url=http%3A%2F%2Feedadriw.sagisis.com%2Febb02163b0d2c8700454484fb38e2145&psig=AFQjCNEGGFwUUug-E6rP2S8eY0dBc6hDRw&ust=1493075353506830

Применение тех или иных способов борьбы определяют зонами селевого бассейна. Профилактические меры принимают для предупреждения появления селя или ослабления его действия ещё в самом начале процесса. Наиболее радикальным средством является лесонасаждение на селеопасных горных склонах. Лес регулирует сток, уменьшает массу воды, рассекает потоки на отдельные ослабленные струи. В зоне водосбора нельзя вырубать лес и нарушать дёрновый покров. Здесь же целесообразно повышать устойчивость склонов террасированием, перехватывать и отводить воду нагорными канавами, земляными валами.

В руслах селей наибольший эффект дают запруды. Эти сооружения из камня и бетона, установленные поперек русла, задерживают сель и отбирают у него часть твёрдого материала. Полузапруды отжимают поток к берегу, который менее подвержен разрыву. Селеулавливатели применяют в виде котлованов и бассейнов, закладываемых на пути движения потоков; строят берегоукрепительные подпорные стенки, препятствующие размыву берегов русла и защищающие здания от ударной силы селя. Эффективны направляющие дамбы и селехранилища. Дамбы направляют поток в нужном направлении и ослабляют его действие.

На участках населённых пунктов и отдельных сооружений, расположенных в зоне отложения пролювия, устраивают отводные каналы, направляющие дамбы, русло рек забирают в высокие каменные берега, ограничивающие растекание селевого потока. Для защиты дорожных сооружений наиболее рациональны селеспуски в виде железобетонных и каменных лотков, пропускающих сели над сооружениями или под ними.

Селевые потоки – кратковременные бурные грязекаменные горные потоки, обладающие огромной разрушительной силой. Селевые потоки наносят большой материальный ущерб, уничтожая сады и виноградники, разрушая дороги, мосты и другие сооружения. Нередко это стихийное бедствие сопровождается человеческими жертвами. Опасность селевых потоков заключается в их внезапности и большой скорости – до 18 километров в час. Попав в сель, состоящий на 50% и более из обломков горных пород, спастись практически невозможно.

Разрушение горных пород

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwievoqsi6rTAhUhJJoKHURyAS0QjRwIBw&url=https%3A%2F%2Finfourok.ru%2Fprezentaciya_po_prirodovedeniyu_razrushenie_gornyh_porod-146994.htm&bvm=bv.152479541,d.ZGg&psig=AFQjCNFfBu2EHHaX6cfk9Hm9-DGehtWNyw&ust=1492470205945597

О природном геологическом явлении

РАЗРУШЕНИЕ ГОРНЫХ ПОРОД (а. rock breaking; н. Gesteinszerstorung; ф. destruction des roches, rupture des roches; и. destruccion de rocas) — нарушение сплошности природных структур горных пород (минеральных агрегатов, массивов горных пород) под действием естественных и искусственных сил. Разрушение — сложный физический или физико-химический процесс, характер развития которого зависит от величины и скорости приложения нагрузки, напряженного состояния объекта, его прочности и структурных свойств. В соответствии с этим разрушение может протекать на микро- и макроскопическом уровнях. Микроскопическое разрушение (размеры зоны разрушения до 1 мм) возникает в месте контакта разрушающего элемента с породой и сопровождается разрывом связей между зёрнами или нарушением химических связей в кристалле, микротрещинами, сдвигом вдоль поверхностей скольжения. Макроскопическое разрушение (размеры зоны разрушения 1 см и более) характеризуется развитием одной или многих трещин, нарушающих сплошность массивов в значительных объёмах. Во всех случаях разрушение начинается с процесса на микроскопическом уровне, при определённых условиях приобретающего макроскопические масштабы.

Естественное разрушение происходит в результате гравитационных (оползни, оседания грунтов, обвалы, осыпи), вулканических, глубинных тектонических процессов, выветривания, других природных процессов и явлений. На горных объектах естественное разрушение сопровождается обрушением подземных горных выработок, бортов карьеров и т.п. и представляет собой негативный фактор, влияние которого снижают выбором специальных технологических схем ведения работ, креплением выработок, закреплением грунтов и т.д. С другой стороны, нарушение сплошности полезных толщ (например, под действием горного давления) упрощает процессы выемки, а разрушение породных толщ интенсифицирует дегазацию горных пород.

Искусственное (принудительное) разрушение — основной процесс технологии добывания и переработки твёрдых полезных ископаемых. Осуществляется в результате главным образом механического и взрывного воздействия на горные породы, в меньшей степени — гидравлического, взрыво-гидравлического, термического, электрического, электромагнитного, комбинированного. При этом разрушающие нагрузки носят или квазистатический характер (скорости их приложения измеряются единицами или десятками м/с) — возникают при бурении, резании, механическом дроблении, или динамический (сотни и тысячи м/с) — при ударном и взрывном разрушении (см. Взрывное разрушение).

Разрушение при бурении скважин имеет ряд особенностей и происходит путём отделения от массива частиц различной крупности в пределах плоскости забоя при наличии только одной обнажённой поверхности и возрастании с глубиной влияния горного давления. Наибольшее распространение получил механический способ бурения, при котором разрушение имеет объёмный, усталостный или поверхностный характер. В первом случае, когда напряжения в породе превышают предел её прочности, порода разрушается на некоторую глубину, которая сохраняется при перемещении породоразрушающих элементов по забою и может превышать их внедрение. Объёмное разрушение наиболее эффективно, т.к. требует наименьших удельных затрат энергии. Усталостное разрушение происходит при контактных напряжениях меньших, чем прочность породы, и наступает после многократного воздействия нагрузок в результате образования и постепенного развития в породе микротрещин. При ещё меньших значениях напряжений происходит поверхностное разрушение, когда породоразрушающие элементы, перемещаясь по забою без внедрения, истирают породу. Такой процесс наименее эффективен, т.к. ведёт к интенсивному износу инструмента и отличается высокими удельными энергозатратами.

Общие теоретические вопросы разрушение исследованы американскими учёными А. А. Гриффитсом, Г. Р. Ирвином, Э. Орованом, польским — В. К. Новацким, советскими — А. Ю. Ишлинским, С. Н. Журковым, Е. И. Шемякиным, Я. Б. Фридманом и др.; в аспекте горного дела — советскими учёными В. В. Ржевским, Л. И. Бароном, А. И. Бероном, Б. И. Воздвиженским, Н. И. Куличихиным, Н. И. Любимовым, В. И. Геронтьевым, М. М. Протодьяконовым и др.

Действие природных факторов

Солнечные лучи – главный фактор, способствующий разрушению твердых горных пород. Днем под палящими лучами солнца они нагреваются, а ночью, наоборот, охлаждаются. Вы знаете, что при нагревании твердые тела расширяются, а при охлаждении сжимаются. От смены температур на поверхности пород образуются трещины. В них попадает вода; замерзая, она расширяет трещины. Это повторяется множество раз, и с каждым разом трещины увеличиваются в размерах, и, наконец, от скальной поверхности откалываются куски.

Живые организмы также способствуют разрушению горных пород. Неприхотливые лишайники, мхи, поселившись на скалах, а затем отмирая, образуют слой почвы, на которой поселяются травы, кустарники, деревья. Корни деревьев, проникая в трещины горной породы, раздвигают их и разрушают. Свою незаметную, но важную роль играют микроорганизмы – бактерии. Они вырабатывают различные химические вещества, способствующие разрыхлению горных пород.

Обломочные горные породы

В результате выветривания у подножия гор на склонах постепенно скапливаются большие и маленькие обломки, или обломочные горные породы: щебень, галька, гравий, песок, глина.

Обломочные породы редко остаются на месте образования. Большей частью они переносятся водой, ветром, ледниками и отлагаются в другом месте. В процессе переноса обломочные породы продолжают разрушаться бурными горными потоками, сползающими ледниками, ветром. Перемещаясь, обломки ударяются друг о друга и перетираются так, что из них в конце концов образуются песок и глина.

Использование обломочных горных пород человеком

Человек широко использует обломочные породы в своей деятельности. Например, щебень, гальку, гравий применяют при строительстве железнодорожных насыпей, шоссейных дорог, для бетонных работ.

Песок – сыпучая горная порода различных цветов, образовавшаяся в процессе полного разрушения гранита или другой горной породы. Он используется в стекольной промышленности, в строительстве домов, автомобильных дорог.

Глина образуется вследствие разрушения полевого шпата и других горных пород. Она состоит из мельчайших частичек, которые, скапливаясь, образуют слои. При смачивании глины водой возникает пластичная масса; из нее можно лепить различные изделия. При высыхании глина становится твердой, как камень. Окраска глины, так же как и песка, может быть самой различной. Из ценнейшей белой глины изготавливают фарфоровые чашки, тарелки, фигурки. Обычная коричневая глина идет на изготовление кирпичей, разнообразной глиняной посуды, ею обмазывают печи в деревнях. Глина используется и как лечебное средство.

Размывы береговых линий — природное геологическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjF_YWEs-PSAhWBCywKHUE5BvEQjRwIBw&url=http%3A%2F%2Fmuph.livejournal.com%2F381183.html&psig=AFQjCNHu5dBnF7IIYfjeYTxUR781mMLSAA&ust=1490041264382741

О природном геологическом явлении размывов береговых линий

Берегова́я ли́ния — линия пересечения поверхности моря или озера с поверхностью суши. В связи с тем, что уровень воды изменяется даже за короткий промежуток времени, береговая линия представляет собой условное понятие, применяемое относительно среднего многолетнего положения уровня водного объекта.
Во многих районах мира размыв берегов воспринимается как серьезное стихийное бедствие. Один из таких районов — Черноморское побережье Кавказа. Причина размывов — нарушение человеком естественного равновесия в береговой зоне. Бедственное положение на участке побережья между Туапсе и Сочи сложилось уже в конце XIX в., когда здесь вплотную к морю построили железную дорогу и начали неумело укреплять берег от размыва, что только ухудшило положение. А потом, на протяжении всего XX в., люди бились над проблемой защиты железнодорожного пути от штормовых волн. В 1946 г. без учета законов развития береговой зоны был построен Сочинский порт, хотя ученые предупреждали о негативных последствиях непродуманного инженерного проекта В результате к юго-востоку от порта в пределах городской черты начались катастрофические размывы берега, а «ковш» порта стал интенсивно заноситься песком. А в 60-е гг. на мысе Пицунда недопустимо близко к береговой линии были возведены многоэтажные гостиницы. В 1969 г. сильнейший шторм размыл узкую полосу пляжа перед гостиничными корпусами, волны разбили нижние этажи зданий и подмыли фундаменты. Чтобы гостиницы не обрушились, пришлось возводить перед ними бетонные волнозащитные стенки и сооружать «наброску» из бетонных блоков. Берег уникального природного комплекса был исковеркан.

Экологические проблемы берега моря

Охрана моря состоит не только в сохранении чистоты его вод, но и в надежной защите его берегов.
Подобно тому, как в свое время активно насаждались лесополосы на хлебных полях, сыгравшие немалую роль в агротехнике, предстоят большие работы по укреплению, с помощью растительного покрова, суглинковых берегов Азовского моря; по намыву пляжей, как противоразрушительных прибрежных «барьеров»; по созданию волнорезов и противооползневого укрепления берегов.
Наряду с заботами о море, требующими определенных организационных усилии и капитальных затрат, есть и заботы, кажущиеся, на первый взгляд, несущественными. Бездумно разрушенные прибрежные колонии Мидий, высушенный ради сувенира краб, бессмысленная подводная охота — это все то, что, скажем, костер на молодой поросли леса.
Неуклонное развитие народного хозяйства в бассейне моря сопровождается сокращением пресноводного притока. В естественных условиях пресный сток в море превышал испарение с его поверхности на 20 км. куб. в год, изменяясь в диапазоне значений от 3 до 50 км. куб. в год. В современных условиях безвозратные изъятия стока в бассейне Азовского моря превысили 10 км. куб. в год. Нельзя допустить превышения недопотребления над нормами естественного пресноводного баланса моря, в противном случае оно может утратить свои рекреационные качества, соленость азовских вод может превысить соленость вод Черного моря со всеми вытекающими из этого последствиями для его фауны и флоры.
Море — могучая природная гидросистема, динамику которой повсеместным «бетонным укрощением» не зарегулировать. Следует идти по пути восстановления и создания вновь эффективных природно-естественных условий гидродинамического саморегулирования в береговой зоне. В этом направлении развивают свои исследования ученые РГУ (Ю. П. Хрусталев, В. А. Мамыкина, Ю. В. Артюхин и др.) По их мнению, все факторы антропогенного воздействия на береговую зону Азовского моря следует подразделить на две группы: непосредственные (прямые) и косвенные (опосредствованные).
К непосредственным факторам относятся: недопустимая застройка оползневых террас, пляжей, бровок, абразионных клифов (обрывы, образуемые волнами на абразионном берегу), дисталей (оконечностей) кос; возведение берегозащитных сооружений на берегах абразионного типа; изъятие наносов с поверхностей кое, перспективных для курортного использования; подводная разработка кос в объемам, превышающих естественное возобновление биогенного материала; сооружение подводных каналов и введение дноуглубительных работ без учета направлений перемещения наносов течениями.
К косвенным (опосредствованным) факторам антропогенного воздействия на развитие береговой зоны моря ученые относят необоснованное зарегулирование стока и водообмена, приводящее к (изменению баланса биогенных компонентов и карбоната кальция, что резко снижает продуктивность фито- и зоопланктона; явления, обуславливающие повышение солености, что ухудшает условия обитании гидробионтов, формирование донных биоценозов и их биомассы, сказывается на объемах ракушечного материала, подводные и надводные аккумулятивные формы; загрязнение водоема промышленно-фекальными сбросами И сбросами рисовых полей, что приводит к исчезновению ареалов массового расселения моллюсков, особенно кардиума, которому принадлежит ведущая роль в формировании берегов кубанской дельты и азовских кос.
Нужны меры, обеспечивающие активизацию процессов самовосстановлении водоема, и предельно снижающие степени переноса попадающих в него загрязнителей.
 

 

Оползень — природное геологическое явление

https://www.google.com.ua/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjP6rLnndbSAhXBjiwKHaUXA84QjRwIBw&url=http%3A%2F%2Fwww.zadumka.org%2Fopolzen%2F&psig=AFQjCNFivavoZnjuiLm_FH5QvEPp1dIG-Q&ust=1489588996882279

О природном геологическом явлении

О́ползень — опасное геологическое явление, смещение масс горных пород по склону под воздействием собственного веса и дополнительной нагрузки вследствие подмыва склона, переувлажнения, сейсмических толчков и иных процессов. Оползни возникают на склонах долин или речных берегов, в горах, на берегах морей, самые грандиозные на дне морей. Наиболее часто оползни возникают на склонах, сложенных чередующимися водоупорными и водоносными породами. Смещение крупных масс земли или породы по склону или клифу вызывается в большинстве случаев смачиванием дождевой водой грунта так, что масса грунта становится тяжелой и более подвижной. Может вызываться также землетрясениями или разрушающей деятельностью моря.Силы трения, обеспечивающие сцепление грунтов или горных пород на склонах, оказываются меньше силы тяжести, и вся масса горной породы приходит в движение.

Причиной образования оползней является нарушение равновесия между сдвигающей силой тяжести и удерживающими силами. Оно вызывается:

  • увеличением крутизны склона в результате подмыва водой;
  • ослаблением прочности пород при выветривании или переувлажнении осадками и подземными водами;
  • воздействием сейсмических толчков;
  • строительной и хозяйственной деятельностью.

Оползни обычно возникают на склонах, сложенных чередующимися водоупорными (глинистыми) и водоносными породами. Смещение блоков породы объёмом в десятки м³ и более, на крутых склонах происходит в результате смачивания поверхностей отрыва подземными водами.

Такие стихийные бедствия вредят сельскохозяйственным угодьям, предприятиям, населённым пунктам. Для борьбы с оползнями применяются берегоукрепительные сооружения, насаждение растительности.

По мощности оползневого процесса, то есть вовлечению в движе­ние масс горных пород, оползни делятся на малые — до 10 тыс. м³, средние — 10-100 тыс. м³, крупные — 100—1000 тыс. м³, очень крупные — свыше 1000 тыс. м³.

Поверхность, по которой оползень отрывается и перемещается вниз, называется поверхностью скольжения или смещения;по её крутизне различают:

  • очень пологие (не более 5°), например, подводные;
  • пологие (5°-15°);
  • крутые (15°-45°).

По глубине залегания поверхности скольжения различают оползни:

  • поверхностные — не глубже 1 м — оплывины, сплавы;
  • мелкие — до 5 м;
  • глубокие — до 20 м;
  • очень глубокие — глубже 20 м.

Классификация оползней (по Саваренскому) по положению поверхности смещения и сложению оползневого тела:

  • Асеквентные (в некоторых источниках указываются как секвентные) — возникают в однородных неслоистых толщах пород; положение криволинейной поверхности скольжения зависит от трения и смещения грунтов;
  • Консеквентные (скользящие) — происходят при неоднородном сложении склона; смещение происходит по поверхности раздела слоёв или трещине;
  • Инсеквентные — возникают также при неоднородном сложении склона, но поверхность смещения пересекает слои разного состава; оползень врезается в горизонтальные или наклонные слои.

Оползны в Киеве

Весной почва «активизируется», приходя в движение и вызывая оползни, особо опасные для строений, находящихся на такой подвижной земле Из-за погодных условий угроза оползней по всему Киеву сейчас очень высока. Специалисты насчитали в городе более сотни аварийных участков, некоторые из них считаются чрезвычайно опасными. 25 марта в центре Киева, на Печерске, масштабный оползень «накрыл» стройплощадку. В результате под слоем грунта оказались несколько строений, обошлось без жертв. Как оказалось, ЧП произошло из-за халатности застройщика, возводящего на улице КИквидзе многоэтажку. В Специализированном управлении противооползневых подземных работ (СУППР) говорят, что в городе полно опасных участков, и каждый имеет свою степень аварийности. Так, на объекте на ул. Лукьяновской, 4, застройщик и вовсе покинул участок — во время строительства там тоже был сильно подрезан склон. Есть опасность для зданий на ул. Глубочицкой: там строители установили лишь временные подпорные стены. Схожая ситуация и в Александровской больнице: «Для зданий больницы пока острой угрозы от оползня нет. Но чуть выше находится участок застройщика, который так и остался незастроенным! Склон в этом месте был сильно подрезан со стороны ул. Богомольца. Там ничего пока не произошло. Но нет гарантий, что все не рухнет», — говорят в СУППРе.
Продолжает сползать грунт и на ул. Кудрявской, 37-41, угрожая десяткам гаражей. Горожане бьют тревогу: «Склон постоянно ползет, но никакие работы не проводят. А ведь все может рухнуть в один миг», — говорит жительница улицы Юлия. «Укрепить одновременно все участки невозможно — на это нужны миллионы! Сейчас ведутся работы на участке ул. Радченко — Зеленогорской, в процессе проектирования — подпорные стены на ул. Локомотивной и Проводницкой. Уже есть готовый проект на аварийные склоны озера Глинки, и вскоре специалисты проведут там противооползневые работы», — поясняют в коммунальном предприятии.
Полный текст читайте здесь: https://styler.rbc.ua/rus/zhizn/opolzni-avariyno-opasnye-mesta-kieve-1459163643.html